

Philips UV-C Disinfection Applications and Offering in the NEW NORM

Contact us:

Ms. Miftahul Jannah Signify Malaysia

Phone : +60 12 307 6806

Email: Miftahul.jannah@signify.com

Our new company name

Our global product brand

Our IoT (Internet of Things) brand

Signify is the world leader in lighting

We provide high-quality energy efficient lighting products, systems and services

Signify

Covid 19 Virus transmission occurs through:

- Direct air-borne transmission between people
- 2. Indirect air-borne transmission through air flows
- Indirect surface-borne transmission via contaminated surfaces

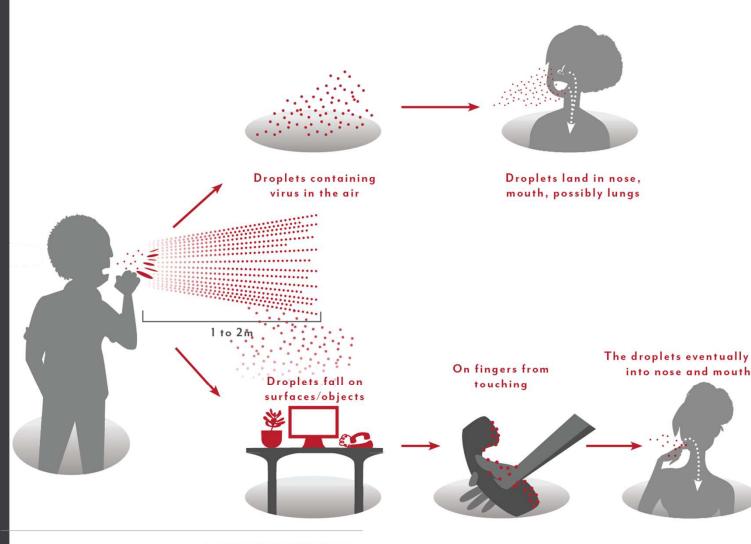
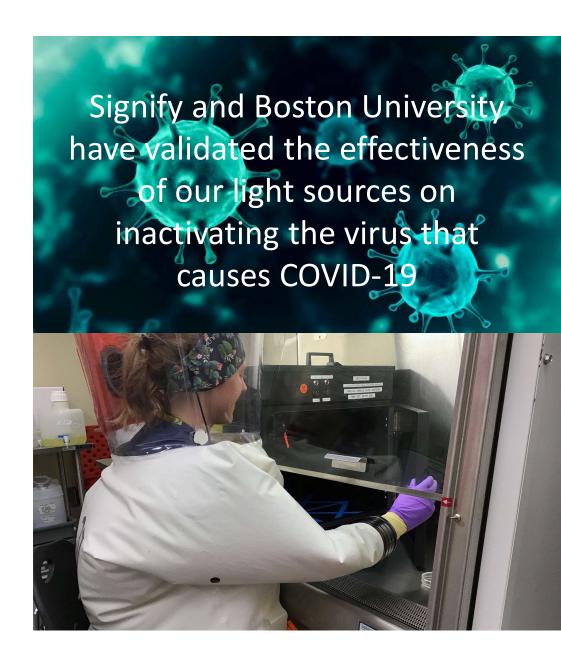


Image credit:



LATEST NEWS

Proven effectiveness on inactivating the virus that caused COVID-19

- COVID-19 infections can be caused by contact with contaminated surfaces and then touching facial areas; additionally it can also be transmitted through air
- The National Emerging Infectious Diseases Laboratories (NEIDL)¹ at Boston University in the US have conducted research that validates the effectiveness of Signify's UV-C light sources on the inactivation of SARS-CoV-2, the virus that causes COVID-19.
- During their research they have treated inoculated material with different doses of UV-C radiation coming from a Signify light source and assessed the inactivation capacity under various conditions.
- The team applied a dose of 5mJ/cm2, resulting in a reduction of the SARS-CoV-2 virus of 99% in 6 seconds. Based on the data, it was determined that a dose of 22mJ/cm2 will result in a reduction of 99.9999% in 25 seconds.²

¹ The NEIDL is a state-of-the-art research facility that encompasses significant containment laboratories at Biosafety Level -2, -3, and -4

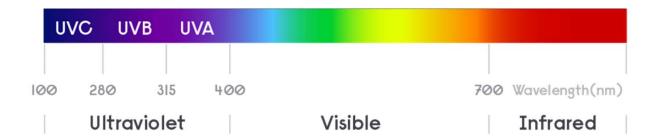
² Research variables are available upon request

What is UV-C and how does it work?

What is UV radiation?

Ultraviolet (UV) light is invisible to human eyes. It can be subdivided into three categories:

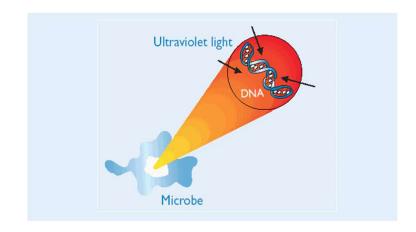
UV-C from 200 to 280 nm

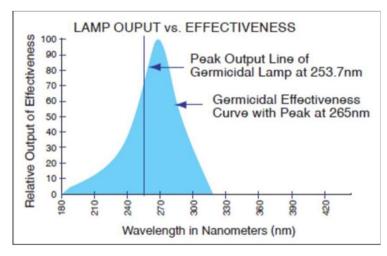

For disinfection purposes and germicidal application

UV-B from 280 to 315 nm

 For medical use (i.e. phototherapy to treat skin conditions, including psoriasis)

UV-A from 315 to 400 nm


 For use with curing, suntanning and insect traps.



How does it work?

- UV-C radiation can break the DNA and RNA of bacteria, viruses and spores, meaning that they leave them harmless. There are no known micro-organisms resistant to UVC.¹
- UV-C technology has been used safely and effectively in hospitals and governmental buildings for more than 40 years²
- Most UV-C solutions utilize conventional lighting, with LED now improving in efficiency
- The peak output of our germicidal lamps (253.7nm) is close (80-85%) to the maximum effectiveness of UV-C (265nm)
- Smaller UV-C wavelengths (222nm) are being explored as less harmful alternatives

¹ Fluence (UV Dose) Required to Achieve Incremental Log Inactivation of Bacteria, Protozoa, Viruses and Algae Revised, updated and expanded by Adel Haji Malayeri, Madjid Mohseni, Bill Cairns and James R. Bolton. With earlier contributions by Gabriel Chevrefils (2006) and Eric Caron (2006) With peer review by Benoit Barbeau, Harold Wright (1999) and Karl G. Linden ²EPA Report, "Building Retrofits for Increased Protection Against Airborne Chemical and Biological Releases" Pg. 56

Effectiveness of disinfection with UV-C determined by two main factors: dosage and environment

Pathogen	Dose (log1)	Pathogen	Dose (log1)
Bacillus anthracis	45.2	Streptococcus faecalis	44
B. megatherium sp. (spores)	27.3	Streptococcus hemoluticus	21.6
B. megatherium sp. (veg.)	13	Streptococcus lactus	61.5
B. parathyphosus	32	Streptococcus viridans	20
B. suptilis	71	Sentertidis	40
B. suptilis spores	120	Vibrio chlolerae (V.comma)	35
Campylobacter jejuni	11	Yersinia enterocolitica	11
Clostridium tetani	120	Bakers' yeast	39
Corynebacterium diphteriae	33.7	Brewers' yeast	33
Dysentery bacilli	22	Common yeast cake	60
Eberthella typhosa	21.4	Saccharomyces cerevisiae	60
Escherichia coli	30	Saccharomyces ellipsoideus	60
Klebsiella terrifani	26	Saccharomyces sp.	80
Legionella pneumophila	9	Aspergillus flavus	600
Micrococcus candidus	60.5	Aspergillus glaucus	440
Micrococcus sphaeroides	100	Aspergillus niger	1320
Mycobacterium tuberculosis	60	Mucor racemosus A	170
Neisseria catarrhalis	44	Mucor racemosus B	170
Phytomonas tumefaciens	44	Oospora lactis	50
Pseudomonas aeruginosa	55	Penicillium digitatum	440
Pseudomonas fluorescens	35	Penicillium expansum	130
Prote <mark>u</mark> s vulgaris	26.4	Penicillium roqueforti	130
Salmonella enteritidis	40	Rhizopus nigricans	1110
Salmonella paratyphi	32	Hepatitis A	73
Salmonella typhimurium	80	Influenza virus	36
Sarcina lutea	197	MS-2 Coliphase	186
SARS-Cov-2	18	Polio virus	58
Seratia marcescens	24.2	Rotavirus	81
Shigella paradysenteriae	16.3	Cryptosporidium parvum	25
Shigella sonnei	30	Giardia lamblia	1
Spirillum rubrum	44	Blue Green	300
Staphylococcus albus	18.4	Chlorella vulgaris	12
Staphylococcus aureus	26		

Reduction for	Reduction for SARS-Cov-2 ^[2]		Dose [mJ/cm²]	
log6	99.9999%	370	37	
log5	99.999%	290	29	
log4	99.99%	220	22	
log3	99.9%	140	14	
log2	99.0%	65	6.5	
log1	90.0%	18	1.8	

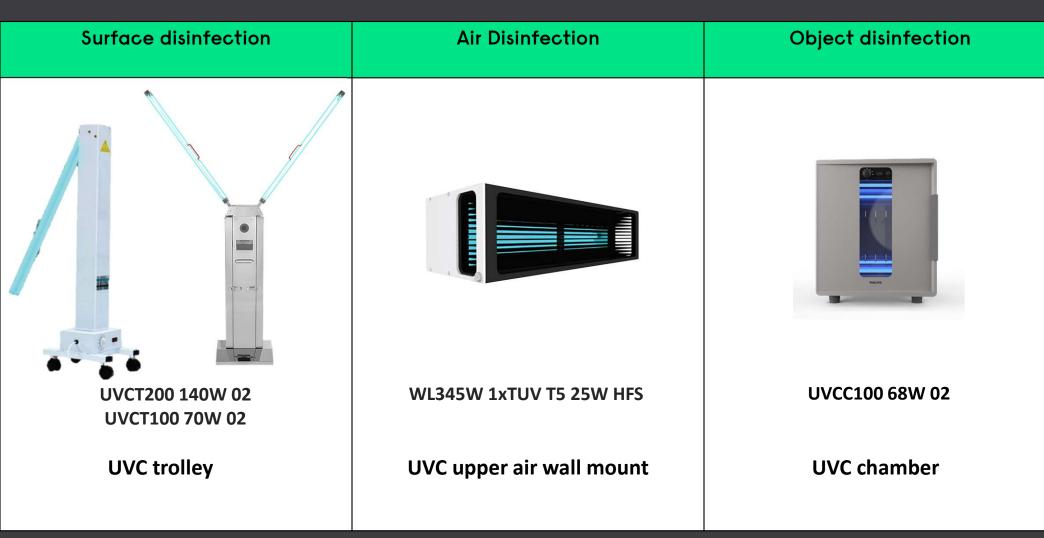
Dosage = Irradiance x time* (J/m^2)

Each pathogen has its own characteristic.

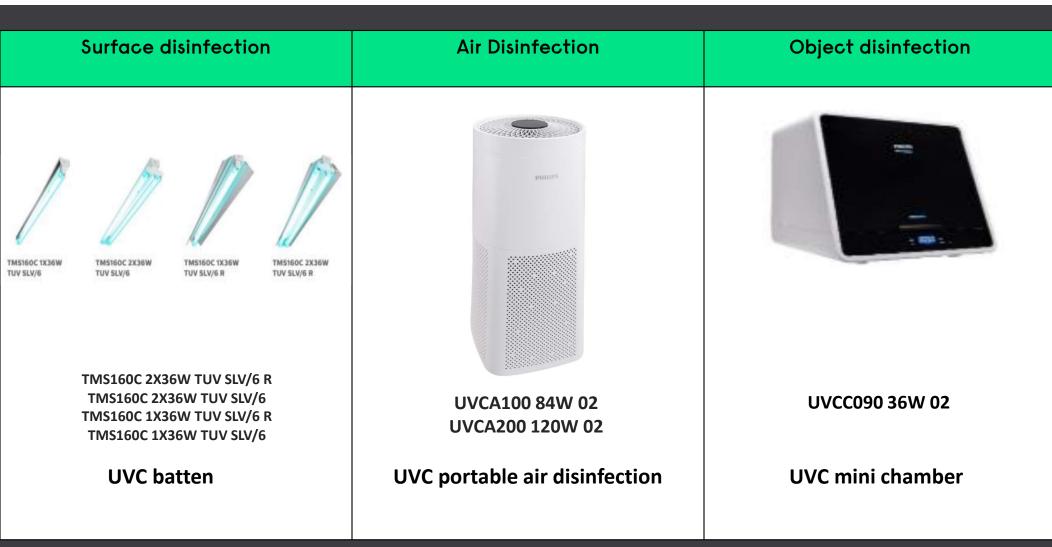
Some pathogens need higher dosage to be inactivated than others

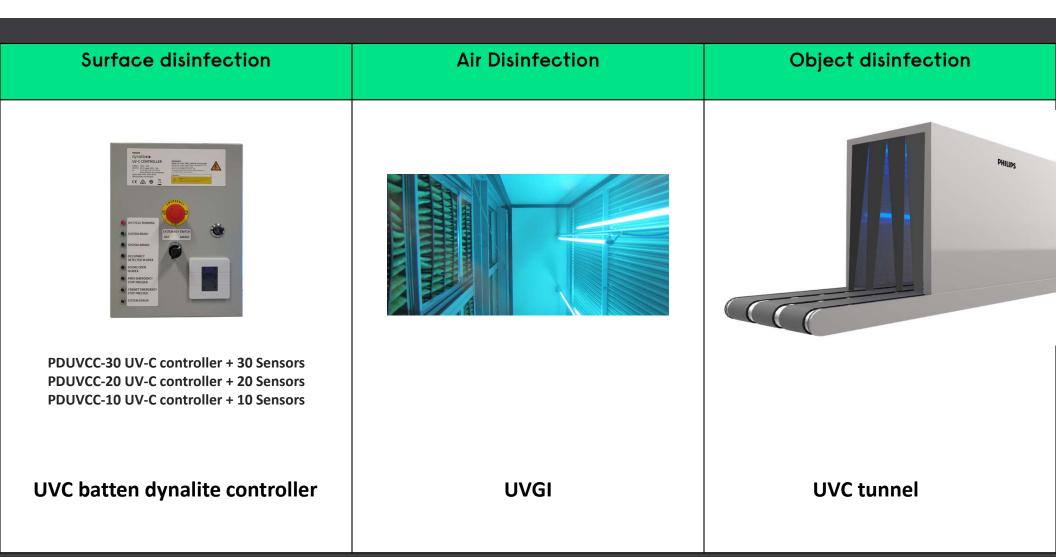
SARS-Cov-2* needs dose

> 290 J/m² to inactivate with 99.999% (5-log reduction)


> 220 J/m² to inactivate with 99.99% (4-log reduction)

Other pathogens need higher or lower dose (see table) SARS-Cov-2 needs relatively low dose to be inactivated

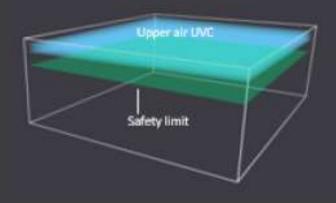


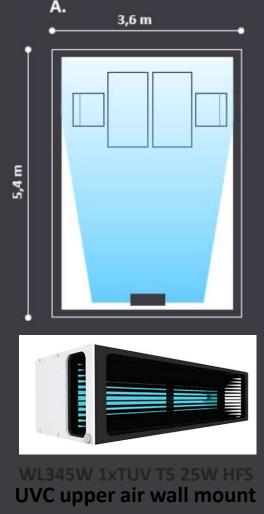

Philips UV-C Solutions

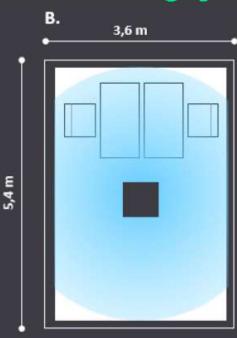
Surface disinfection	Air Disinfection	Object disinfection
TMS160C 1X36W TUV SLV/6 R Sensor	SM345C C 4xTUV PLS 9W HFM	UVCC200 80W 02
UVC batten with sensor	UVC upper air ceiling mount	UVC chamber

Sample of Applications

Applications: Looking at just surface and air, there are numerous real-world segments where UV-C lighting is a viable disinfection solution

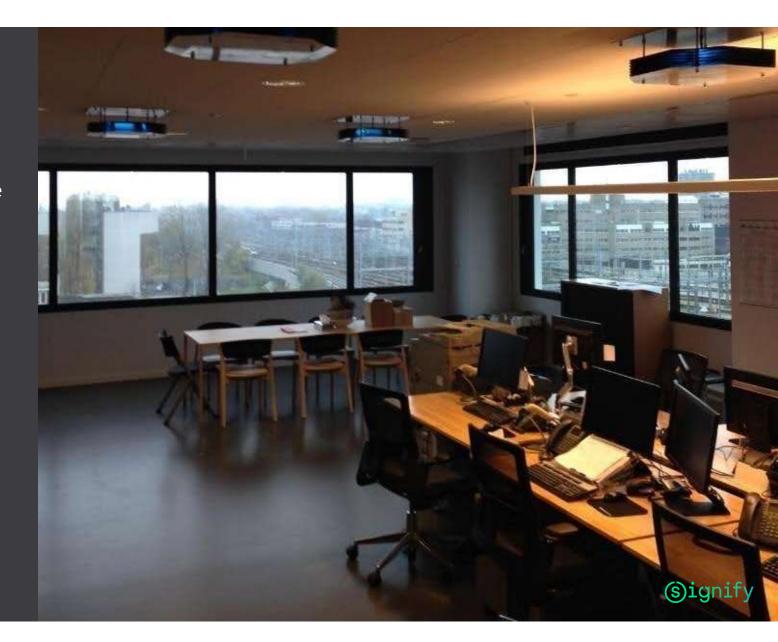



Recommended dosage


Boundary conditions used

- Reflection factors
 - Ceiling: 10%
 - Walls: 5%
 - Floor: 5%
- Maintenance factor safety limits: 1.0 (i.e. max output)
- Maintenance factor fluence rate: 0.80 *
- Ceiling height: 2.80 m

(S)ignify



SM345C C 4xTUV PLS 9W HFM UVC upper air ceiling mount

UVC Upper Air

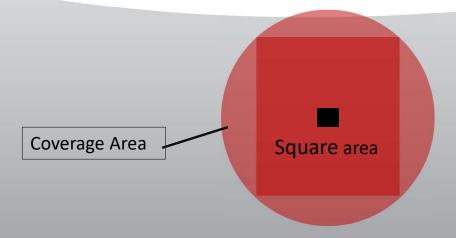
The effectiveness of Upper-Room UVGI and it has become an important and effective addition to other infection control measures.

Well planned and maintained Upper-Room UVGI will help prevent transmission of airborne diseases.

PHILIPS

UV-C Appliances

UV-C TrolleyRecommended dosage


1 arm Trolley

2-arm Trolley

Calculation result for SARS - CoV-2 (causes COVID-19):DOSE 4log						
disinfection duration (mins)	15min	30mins	60mins	90mins	120mins	
circular area (m2)	18	36	70	105	140	
square area (m2)	10	20	40	65	90	

Calculation result for SARS - CoV-2 (causes COVID-19):DOSE 4log					
disinfection duration (mins)	15min	30mins	60mins	90mins	120mins
circular area (m2)	36	70	140	215	290
square area (m2)	20	40	90	135	185

PHILIPS

UV-C Batten

UV-C Appliances


Recommended dosage

Reduction for	Reduction for SARS-Cov-2 ^[2]		Dose [mJ/cm²]	
log6	99.9999%	370	37	
log5	99.999%	290	29	
log4	99.99%	220	22	
log3	99.9%	140	14	
log2	99.0%	65	6.5	
log1	90.0%	18	1.8	

Log5

Irradiance x Exposure time = Dosage Irradiance x Exposure time = 290J/m²

UVC Batten	Irradiance @ 0.76m	Time to achieve 290J/msq
TMS160C 1X36W TUV SLV/6 R Sensor	91mW/m ²	55min
TMS160C 1X36W TUV SLV/6	66mW/m ²	75min
TMS160C 1X36W TUV SLV/6 R	91mW/m ²	55min
TMS160C 2X36W TUV SLV/6	106mW/m ²	46min
TMS160C 2X36W TUV SLV/6 R	163mW/m ²	30min

Effectiveness credentials

Press Release

June 16, 202

Signify and Boston University validate effectiveness of Signify's UV-C light sources on inactivating the virus that causes COVID-19

- · Test results show that the virus could no longer be detected after seconds of exposure
- Signify to make its UV-C lighting technology widely available to other lighting companies
- Signify has been at the forefront of UV technology for more than 35 years

Eindhoven, the Netherlands – <u>Signify</u> (Euronext: LIGHT), the world leader in lighting, together with the National Emerging Infectious Diseases Laboratories (NEIOL)¹ at Boston University in the US have conducted research that validates the effectiveness of Signify's UV-C light sources on the inactivation of SARS-CoV-2, the virus that causes COVID-19.

Since the start of the SARS CoV-2 pandemic, Dr. Anthony Griffiths, Associate Professor of Microbiology at Boston University School of Medicine and his team have been working on developing tools to support scientific advancement in this field. During their research they have treated inoculated material with different doxes of UV-C radiation coming from a Signify light source and assessed the inactivation capacity under various conditions. The team applied a dose of Sml/Cm², resulting in a reduction of the SARS-CoV-2 virus of 99% in 6 seconds. Based on the data, it was determined that a dose of 22ml/cm² will result in a reduction of 99.999% in 25 seconds. ³

"Our test results show that above a specific dose of UV-C radiation, viruses were completely inactivated: in a matter of seconds we could no longer detect any virus," said Dr. Anthony Griffiths. "We're very excited about these findings and hope that this will accelerate the development of products that can help limit the spread of COVID-19."

Signify is the leader in UV-C light sources and has been at the forefront of UV technology for more than 35 years. It has a proven track record of innovation in UV-C lighting, which is designed, manufactured and installed in line with the highest safety standards.

"I'm very happy about the fruitful cooperation with Boston University in the fight against the coronavirus. Boston University has validated the effectiveness of our light sources as a preventive measure for companies and institutions as they seek ways to provide virus-free environments," said Eric Rondolat, CEO of Signify. "Given the potential of the technology to aid the fight against the coronavirus, Signify will not keep the technology for its exclusive use but make it available to other lighting companies. To service the growing need for disinfection we will increase our production capacity multifold in the coming months."

- END -

DocuSian Envelope ID: 6C5235F5-3820-470F-9E8A-EEE13C8D8313

Innovative Bioanalysis
3188 Airway Ave Suite D
Costa Mesa CA, 92626
www.lnnovativeBioanalysis.com
Fmail: Albert Brockman@innovativebioanalysis.com

SARS-CoV-2USA-CA1/2020

CLIENT: SIGNIFY

PROJECT: UV WALL SYSTEM AEROSOL

PRODUCT: WL345W UV WALL MOUNT

CAP LIC NO: 886029801

CLIA LIC NO: 05D0955926

STATE ID: CLF 00324630

CHALLENGE VIRUS: SARS-CoV-2 USA-CA1/2020

SIGNIFY UV WALL AEROSOL

Page 1 of 11

SIGNIFY NETHERLANDS B.V.

EFFICACY TEST REPORT

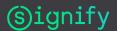
SCOPE OF WOR

Non-standardized Test Method: Microbial Reduction Rate Test

PRODUCT - Germicidal UV Light

MODEL --1. Philips UV-C disinfection upper air luminaire, ceiling mount, Philips PL-S TUV lamp included: 4x9W

Philips UV-C disinfection upper air luminaire, wall mount, Philips T5 TUV lamp included: 25W


REPORT NUMBER 104510702COL-001

ISSUE DATE 12/31/20

PAGES

DOCUMENT CONTROL NUMBER GFT-OP-10h (6-July-2017) © 2020 INTERTEK

¹ The NEIDL is a state-of-the-art research facility that encompasses significant containment laboratories at Biosafety Level -2, -3, and -

³ Dr. Griffiths' team develops vaccines and therapeutics for Risk Group 3 and 4 viruses, which include organisms that can cause serious or deadly diseases in humans

³ Research variables are available upon request

Contact us:

Ms. Miftahul Jannah

Signify Malaysia

Phone : +60 12 307 6806

Email: signifymalaysia.professional@signify.com

Miftahul.Jannah@signify.com

(s) ignify